Crocs Uncover

Bizarre Species

sábado, 3 de noviembre de 2012

Were Dinosaurs Destined to Be Big? Testing Cope's Rule

In the evolutionary long run, small critters tend to evolve into bigger beasts -- at least according to the idea attributed to paleontologist Edward Cope, now known as Cope's Rule. Using the latest advanced statistical modeling methods, a new test of this rule as it applies dinosaurs shows that Cope was right -- sometimes.
"For a long time, dinosaurs were thought to be the example of Cope's Rule," says Gene Hunt, curator in the Department of Paleobiology at the National Museum of Natural History (NMNH) in Washington, D.C. Other groups, particularly mammals, also provide plenty of classic examples of the rule, Hunt says. To see if Cope's rule really applies to dinosaurs, Hunt and colleagues Richard FitzJohn of the University of British Columbia and Matthew Carrano of the NMNH used dinosaur thigh bones (aka femurs) as proxies for animal size. They then used that femur data in their statistical model to look for two things: directional trends in size over time and whether there were any detectable upper limits for body size. "What we did then was explore how constant a rule is this Cope's Rule trend within dinosaurs," said Hunt. They looked across the "family tree" of dinosaurs and found that some groups, or clades, of dinosaurs do indeed trend larger over time, following Cope's Rule. Ceratopsids and hadrosaurs, for instance, show more increases in size than decreases over time, according to Hunt. Although birds evolved from theropod dinosaurs, the team excluded them from the study because of the evolutionary pressure birds faced to lighten up and get smaller so they could fly better. As for the upper limits to size, the results were sometimes yes, sometimes no. The four-legged sauropods (i.e., long-necked, small-headed herbivores) and ornithopod (i.e., iguanodons, ceratopsids) clades showed no indication of upper limits to how large they could evolve. And indeed, these groups contain the largest land animals that ever lived. Theropods, which include the famous Tyrannosaurus rex, on the other hand, did show what appears to be an upper limit on body size. This may not be particularly surprising, says Hunt, because theropods were bipedal, and there are physical limits to how massive you can get while still being able to move around on two legs. Hunt, FitzJohn, and Carrano will be presenting the results of their study on Nov. 4, at the annual meeting of The Geological Society of America in Charlotte, North Carolina, USA. As for why Cope's Rule works at all, that is not very well understood, says Hunt. "It does happen sometimes, but not always," he added. The traditional idea that somehow "bigger is better" because a bigger animal is less likely to be preyed upon is naïve, Hunt says. After all, even the biggest animals start out small enough to be preyed upon and spend a long, vulnerable, time getting gigantic. Abstract:

A New Order in the Quantum World: Using Laser Beams Scientists Generated Quantum Matter With Novel, Crystal-Like Properties

By using laser beams MPQ scientists generate quantum matter with novel, crystal-like properties. Both high-valued diamond and low-prized graphite consist of exactly the same carbon atoms. The subtle but nevertheless important difference between the two materials is the geometrical configuration of their building blocks, with large consequences for their properties. There is no way any kind of material could be diamond and graphite at the same time. However, this limitation does not hold for quantum matter, as a team of the Quantum Many-Body Physics Division of Prof. Immanuel Bloch (Max-Planck-Institute of Quantum Optics and Ludwig-Maximilians-Universität München) was now able to demonstrate in experiments with ultracold quantum gases. Under the influence of laser beams single atoms would arrange to clear geometrical structures. But in contrast to classical crystals all possible configurations would exist at the same time, similar to the situation of Schrödinger's cat which is in a superposition state of both "dead" and "alive." The observation was made after transferring the particles to a highly excited so-called Rydberg-state. "Our experiment demonstrates the potential of Rydberg gases to realise exotic states of matter, thereby laying the basis for quantum simulations of, for example, quantum magnets," Professor Immanuel Bloch points out. The experimental work was supported by theoretical model calculations performed in the group of Dr. Thomas Pohl (Max Planck Institute for the Physics of Complex Systems, Dresden). The experiment begins with cooling an ensemble of a couple of hundred rubidium atoms down to temperatures near absolute zero and catching the atoms in a light trap. The atomic cloud is then superimposed with a periodic light field -- a so-called optical lattice which provides an almost uniform filling in the central region of the trap. In the next step laser light is applied to transfer the atoms into a Rydberg-state in which the outermost shell electron is located at a huge distance from the atomic nucleus. As a result, the sphere of influence of these atoms is blown up, like a balloon, by a factor of about 10 000, reaching a comparatively "huge" diameter of several micrometres -- about the size of a tenth of the diameter of an average hair. These super-atoms now interact strongly via so-called van der Waals forces, which act over a long range. For the Rydberg states chosen in the experiment, the interaction between the atoms is strongly repulsive, such that the atoms have to keep a minimum distance of several micrometers from each other. This mutual blockade leads to spatial correlations between the atoms such that, depending on the number of Rydberg-atoms, states with different geometrical configurations can emerge (see fig. 1). "However, we have to be aware that in our excited quantum system all geometrical orders are present at the same time. To be precise, all the excitation states form a coherent superposition," Dr. Marc Cheneau says, a scientist at the experiment. "This new state of matter is a very fragile, crystal-like formation; it exists as long as the excitation is sustained, and fades away once the beam is switched off." As soon as the system undergoes an observation the superposition collapses into a specific geometric configuration of Rydberg-atoms, in analogy to the famous example of Schrödinger's cat which is found, once it is observed, either dead or alive. In a series of "snap shots" of such configurations the scientists revealed the different patterns of the individual excitation states. This is possible by using a special technique which images each Rydberg-atom directly with very high spatial resolution. "We observe the emergence of spatially ordered excitation patterns with random orientation, but a well defined geometry," Peter Schauß explains, who works at the experiment as a doctoral candidate. In order to recognize the fundamental structures the individual images are grouped according to the number of Rydberg-atoms. Typical microscopic configurations are shown in figure 2. Three atoms are arranged on an equilateral triangle, four or five atoms form quadratic or pentagonal configurations. The experimental data was in good agreement with numerical simulations of the many-body dynamics which were performed by the group of Dr. Thomas Pohl. As far as the pattern of each individual excitation state is concerned the observations can be described classically. "In order to reveal the quantum physical behaviour of our system we investigated the time-dependent probabilities for the different excitation states, each characterized by a certain number of Rydberg-atoms," Peter Schauß says "Thereby we were able to discover that the dynamic of the excitation process is ten times as fast as in classical systems without blockade effects. This is a first indication that our system is indeed in a coherent quantum state, composed of different spatially ordered configurations." A future challenge for the scientists is the deterministic preparation of Rydberg crystals with a well defined number of excitations. Combining the blockade effect with the single-atom addressing one could engineer quantum gates which can serve as an experimental toolbox for a variety of quantum simulations. Several Rydberg-atoms could be connected to a scalable quantum system for quantum information processing. Olivia Meyer-Streng

NASA Rover Finds Clues to Changes in Mars' Atmosphere

NASA's car-sized rover, Curiosity, has taken significant steps toward understanding how Mars may have lost much of its original atmosphere. Learning what happened to the Martian atmosphere will help scientists assess whether the planet ever was habitable. The present atmosphere of Mars is 100 times thinner than Earth's. A set of instruments aboard the rover has ingested and analyzed samples of the atmosphere collected near the "Rocknest" site in Gale Crater where the rover is stopped for research. Findings from the Sample Analysis at Mars (SAM) instruments suggest that loss of a fraction of the atmosphere, resulting from a physical process favoring retention of heavier isotopes of certain elements, has been a significant factor in the evolution of the planet. Isotopes are variants of the same element with different atomic weights. Initial SAM results show an increase of five percent in heavier isotopes of carbon in the atmospheric carbon dioxide compared to estimates of the isotopic ratios present when Mars formed. These enriched ratios of heavier isotopes to lighter ones suggest the top of the atmosphere may have been lost to interplanetary space. Losses at the top of the atmosphere would deplete lighter isotopes. Isotopes of argon also show enrichment of the heavy isotope, matching previous estimates of atmosphere composition derived from studies of Martian meteorites on Earth. Scientists theorize that in Mars' distant past its environment may have been quite different, with persistent water and a thicker atmosphere. NASA's Mars Atmosphere and Volatile Evolution, or MAVEN, mission will investigate possible losses from the upper atmosphere when it arrives at Mars in 2014. With these initial sniffs of Martian atmosphere, SAM also made the most sensitive measurements ever to search for methane gas on Mars. Preliminary results reveal little to no methane. Methane is of interest as a simple precursor chemical for life. On Earth, it can be produced by either biological or non-biological processes. Methane has been difficult to detect from Earth or the current generation of Mars orbiters because the gas exists on Mars only in traces, if at all. The Tunable Laser Spectrometer (TLS) in SAM provides the first search conducted within the Martian atmosphere for this molecule. The initial SAM measurements place an upper limit of just a few parts methane per billion parts of Martian atmosphere, by volume, with enough uncertainty that the amount could be zero. "Methane is clearly not an abundant gas at the Gale Crater site, if it is there at all. At this point in the mission we're just excited to be searching for it," said SAM TLS lead Chris Webster of NASA's Jet Propulsion Laboratory in Pasadena, Calif. "While we determine upper limits on low values, atmospheric variability in the Martian atmosphere could yet hold surprises for us." In Curiosity's first three months on Mars, SAM has analyzed atmosphere samples with two laboratory methods. One is a mass spectrometer investigating the full range of atmospheric gases. The other, TLS, has focused on carbon dioxide and methane. During its two-year prime mission, the rover also will use an instrument called a gas chromatograph that separates and identifies gases. The instrument also will analyze samples of soil and rock, as well as more atmosphere samples. "With these first atmospheric measurements we already can see the power of having a complex chemical laboratory like SAM on the surface of Mars," said SAM Principal Investigator Paul Mahaffy of NASA's Goddard Space Flight Center in Greenbelt, Md. "Both atmospheric and solid sample analyses are crucial for understanding Mars' habitability." SAM is set to analyze its first solid sample in the coming weeks, beginning the search for organic compounds in the rocks and soils of Gale Crater. Analyzing water-bearing minerals and searching for and analyzing carbonates are high priorities for upcoming SAM solid sample analyses. Researchers are using Curiosity's 10 instruments to investigate whether areas in Gale Crater ever offered environmental conditions favorable for microbial life. JPL, a division of the California Institute of Technology in Pasadena, manages the project for NASA's Science Mission Directorate, Washington, and built Curiosity. The SAM instrument was developed at Goddard with instrument contributions from Goddard, JPL and the University of Paris in France. For more information about Curiosity and its mission, visit: and . You can follow the mission on Facebook and Twitter at: and .

Our Solar System Is Not Quite as Special as Once Believed, New Research Suggests

Some 4.567 billion years ago, our solar system's planets spawned from an expansive disc of gas and dust rotating around the sun. While similar processes are witnessed in younger solar systems throughout the Milky Way, the formative stages of our own solar system were believed to have taken twice as long to occur. Now, new research lead by the Centre for Star and Planet Formation at the Natural History Museum of Denmark, University of Copenhagen, suggests otherwise. Indeed, our solar system is not quite as special as once believed. Supergiant Using improved methods of analysis of uranium and lead isotopes, the current study of primitive meteorites has enabled researchers to date the formation of two very different types of materials, so-called calcium-aluminum-rich inclusions (or CAI's for short) and chondrules, found within the same meteorite. By doing so, the chronology and therefore overall understanding of our solar system's development has been altered. The study has just been published in the scientific journal Science. 4.567 billion years -- this is how far back we must travel to experience our nascent solar system. The researchers at the University of Copenhagen Centre for Star and Planet Formation took a closer look at the first three million years of the solar system's development by analysing primitive meteorites composed of a blend of our solar system's very oldest materials. In part, the study confirmed previous analyses demonstrating that CAI's were formed during a very short period of time. The new discovery is that the so-called chondrules were formed during the first three million years of the solar system's development as well. This stands in contrast with previous assumptions asserting that chondrules only started forming roughly two million years after CAIs. Painting a new picture of the Solar System "By using this process to date the formation of these two very different types of materials found in the same meteorite, we are not only able to alter the chronology of our solar system's historical development, we are able to paint a new picture of our solar system's development, which is very much like the picture that other researchers have observed in other planetary systems," says James Connelly of the Centre for Star and Planet Formation. We aren't that special... Showing that chondrules are as old as CAIs addresses a long-standing question of why chondrule formation should be delayed by up to 2 million years after CAIs. The answer -- it is not. "In general, we have shown that we are not quite as unique as we once thought. Our solar system closely resembles other observable planetary systems within our galaxy. In this way, our results serve to corroborate other research results which indicate that earth-like planets are more widespread in the universe than previously believed," says Professor Martin Bizzarro, head of the Centre for Star and Planet Formation. Share this story on Facebook, Twitter, and Google:

The 10 Silicon Valley Companies You Wish You Worked for (or Started)

The history of Silicon Valley is the history of digital technology. To become a part of that history, do you go to work for one of the giants — Apple, Google, Intel, HP, Oracle, Facebook? Or do you catch a wave that hasn't crested yet? Longtime Silicon Valley venture capitalist turned Stanford faculty member and entrepreneur Andy Rachleff tells his students the best thing they can do is join a mid-size company that has proven its durability but is still growing rapidly. In a recent blog post on the website of his software-driven money management service Wealthfront, he writes: You get more credit than you deserve for being part of a successful company, and less credit than you deserve for being part of an unsuccessful company. Success will help propel your career. At a fast-growing company, chances are good you’ll have a higher position two years after you join. At a slow-growth company, no matter how good a job you do, you won’t have the same opportunities to advance. When it comes time to leave the successful company, you’ll be able to write your own ticket. Rachleff's advice is actually geared toward aspiring tech stars who are thinking about going to work at a startup. He says don't. But it sounds equally applicable to going to work for a giant company where you're in danger of becoming just another cog. In our last post, we highlighted the 10 San Francisco tech companies you wish you worked for based on Rachleff's recommendations. They tended toward the fun and quirky. In Silicon Valley the geeks get serious. Rachleff says these 10 private companies, each with revenue between $20 million and $300 million, are among the best you could join to launch a successful career in tech. (Coming next: 10 tech companies you wish you worked for outside of California.) Above: Arista Networks Sun Microsystems' founding hardware engineer Andy Bechtolsheim started Arista in 2005 with partner David Cheriton to build networking switches to power the cloud. This year LinkedIn named Arista the top Bay Area startup for engineers.